LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2019

16/17/18UST3ALO1 - MATHEMATICAL STATISTICS - I

Date: 06-11-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Section A

Answer all questions

1. Define a random experiment.
2. Two unbiased dice are thrown. Find the probability that both the dice show the same number.
3. Define distribution function of a random variable
4. Let X be a random variable with following probability distribution

X	-3	6	9
$P(X=x)$	$1 / 6$	$1 / 2$	$1 / 3$

Find $E(X)$ and $E\left(X^{2}\right)$.
5. Determine the parameters of binomial distribution whose mean is 4 and variance is 3 .
6. Derive the moment generating function of rectangular distribution.
7. Define the smallest order statistic.
8. Derive the mean of Poisson distribution.
9. Write the probability density function of F-distribution.
10. List any three properties of characteristic function.

Section B

Answer any five questions

11. State and prove addition theorem of probability.
12. From a city population, the probability of selecting (i) a male or a smoker is $7 / 10$ (ii) a male smoker is $2 / 5$ (iii) a male, if the smoker is already selected is $2 / 3$. Find the probability of selecting (a) a non-smoker (b) a male (c) a smoker if a male is first selected.
13. The joint probability density function of a two-dimensional random variable (X, Y) is given by $f(x, y)=2$; $0<x<1$, $0<y<x$. (i) Find the marginal density functions of X and Y (ii) Find the conditional density functions and (iii) Check for independence of X and Y.
14. Show that the exponential distribution lacks memory.
15. Two independent random variables X and Y are both normally distributed with means 1 and 2 and standard deviations 3 and 4 respectively. If $Z=X-Y$, write the probability density function of Z. Also state the median, standard deviation and mean of the distribution of Z. Find $\mathrm{P}(\mathrm{Z}+1 \leq 0)$
16. In a continuous distribution whose relative frequency density is given by $f(x)=y_{0} \cdot x(2-x), 0 \leq x \leq 2$. Find mean and variance.
17. Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their sons (Y) :

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

18. Derive the joint probability density function of a group of k order statistics.

Section C

Answer any two questions

19. (a) State and prove Bayes' theorem.
(b) A and B throw alternatively with a pair of balanced dice. A wins if he throws a sum of six points before B throws a sum of seven points, while B wins if he throws a sum of seven points before A throws a sum of six points. If A begins the game, show that his probability of winning is $30 / 61$.
$(10+10)$
20. (a) Define beta variate of second kind. Obtain its mean and variance.
(b) The daily consumption of milk in a city, in excess of 20,000 litres, is approximately distributed as a gamma variate with parameters $a=1 / 10,000$ and $\lambda=2$. The city has a daily stock of 30,000 litres. What is the probability that the stock is insufficient on a particular day?
21. (a) State and prove Chebychev's inequality.
(b) Derive the probability density function of Chi-Square distribution.
22. (a) State and prove Central Limit Theorem
(b) Define a t-distribution. Derive the moments of t-distribution.
